
Section 1-5, Mathematics 108 

 

Solving Equations 

 

Linear Equations 
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Quadratic Equations 

 

1) Try Factoring 

 

2) Completing the square? 

 

Recall that 

 

( )22 22A AB B A B± + = ±  

 

That means that an equation 

 
2 0ax bx c+ + =  

 

We can create a perfect square from the first two terms by making the third term 
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Example: 
2 8 13 0x x− + =  

 

We find 
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Quadratic Formula 

 

We can apply this procedure to the general equation and get the quadratic formula 
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Note the discriminant 2 4b ac− tells us about the roots or zeros. 
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Equations with radicals (can be tricky) 
 

Example: 

 

2 1 2x x= − −  

 

First step, get rid of the radical by squaring 
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Using the quadratic formula 
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However squaring can introduce "phantom" roots, so we need to plug these roots back in 

to check. 
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So 1 is a phantom root, not a solution. 
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So 
1

4
−  is a solution. 



Simple Higher Degree Equations 

 

Sometimes a 3
rd 
 or 4

th
 degree polynomial equation is really a quadratic in disguise. 

 

Example: 

 
4 28 8 0x x− + =  

 

In this equation let 2y x=  so 
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Using all 4 combinations of + an - you get 4 distinct roots or solutions. 

 

 

 

Fractional Powers 
 

Example: 

 
1 3 1 6 2 0x x+ − =  

 

Let 1 6y x=  

 
2

3

2 0

1 1 8 1 3
1, 2

2 2

1, 8

y y

y

y x

x

+ − =

− ± + − ±
= = = −

=

= −

 

 

Checking the roots we find that 1 is a solution, but -8 is a phantom. 

 



Absolute Value Equations 
 

When you have an absolute value in an equation you really have two different equations. 

Split it up and solve each individually 

 

Example: 

 

  

 

Try them both out 
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Supplemental (You don't need to know this) 

 

Since there is a quadratic formula, is there a similar solution for polynomial equations of 

the third degree, a cubic equation? 

 

Yes! 

 

Niccolò Fontana Tartaglia, an Italian mathematician  who lived from 1499-1557 came up 

with this formula. 

 

Given the equation 3 2 0ax bx cx d+ + + =  
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Similarly there is a quartic formula discovered by Lodovico Ferrari in 1540. 

 

The search for a formulaic solution to the general 5th degree equation went on for almost 

300 years until Niels Henrik Abel, a Norwegian mathematican showed in 1820 that no 

such formula could exist.  

 

The search for this formula served to develop what is known today as the subject 

"Modern Algebra", a course you might take as an undergraduate mathematics major after 

Calculus and Linear Algebra.  

 

 

 

 


